MATH 1A - MIDTERM 2 - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (15 points) Using the definition of the derivative, calculate f'(4), where:

$$f(x) = \sqrt{x}$$

$$f'(4) = \lim_{x \to 4} \frac{f(x) - f(4)}{x - 4}$$

= $\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}$
= $\lim_{x \to 4} \frac{(\sqrt{x} - 2)(\sqrt{x} + 2)}{(x - 4)(\sqrt{x} + 2)}$
= $\lim_{x \to 4} \frac{x - 4}{(x - 4)(\sqrt{x} + 2)}$
= $\lim_{x \to 4} \frac{1}{\sqrt{x} + 2}$
= $\frac{1}{2 + 2}$
= $\frac{1}{4}$

Hence, $f'(4) = \frac{1}{4}$

Date: Friday, July 15th, 2011.

2. (15 points) Using the definition of the derivative, calculate f'(x), where:

$$f(x) = x^2 + x$$

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

=
$$\lim_{x \to a} \frac{x^2 + x - (a^2 + a)}{x - a}$$

=
$$\lim_{x \to a} \frac{x^2 + x - a^2 - a}{x - a}$$

=
$$\lim_{x \to a} \frac{x^2 - a^2 + (x - a)}{x - a}$$

=
$$\lim_{x \to a} \frac{x^2 - a^2}{x - a} + \frac{x - a}{x - a}$$

=
$$\lim_{x \to a} \frac{(x - a)(x + a)}{x - a} + \lim_{x \to a} \frac{x - a}{x - a}$$

=
$$\lim_{x \to a} x + a + \lim_{x \to a} 1$$

=
$$2a + 1$$

Hence,
$$f'(x) = 2x + 1$$

Other solution:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

= $\lim_{h \to 0} \frac{(a+h)^2 + (a+h) - (a^2 + a)}{h}$
= $\lim_{h \to 0} \frac{a^2 + 2ah + h^2 + a + h - a^2 - a}{h}$
= $\lim_{h \to 0} \frac{2ah + h^2 + h}{h}$
= $\lim_{h \to 0} \frac{2ah + h^2 + h}{h}$
= $\lim_{h \to 0} \frac{h(2a+h+1)}{h}$
= $\lim_{h \to 0} 2a + h + 1$
= $2a + 1$

Hence,
$$f'(x) = 2x + 1$$

3. (50 points, 5 points each) Find the derivatives of the following functions:

(a)
$$f(x) = e^x + \cos(x) + 1$$

 $f'(x) = e^x - \sin(x)$

(b)
$$f(x) = x \ln(x) - x$$

$$f'(x) = \ln(x) + x\left(\frac{1}{x}\right) - 1 = \ln(x) + 1 - 1 = \ln(x)$$

(c)
$$f(x) = \frac{e^x}{(\sin(x))^2}$$

$$f'(x) = \frac{e^x (\sin(x))^2 - e^x 2 \sin(x) \cos(x)}{(\sin(x))^4} = \frac{e^x (\sin(x) - 2 \cos(x))}{(\sin(x))^3}$$

(d)
$$f(x) = \sqrt{\ln(x^2 + 1)}$$

$$f'(x) = \left(\frac{1}{2\sqrt{\ln(x^2 + 1)}}\right) \left(\frac{1}{x^2 + 1}\right) (2x)$$

Note: Woe to you if you tried to simplify!

$$\ln(x^2 + 1) \neq \ln(x^2) + \ln(1)$$

(e)
$$f(x) = \tan(\tan(\tan(x)))$$

$$f'(x) = \sec^2(\tan(\tan(x))) \times \sec^2(\tan(x)) \times \sec^2(x)$$

(f)
$$f(x) = (\sin(x))^{x}$$

Let $y = (\sin(x))^{x}$
1) $\ln(y) = x \ln(\sin(x))$
2) $\frac{y'}{y} = \ln(\sin(x)) + x \frac{\cos(x)}{\sin(x)}$
3) $y' = y \left(\ln(\sin(x)) + x \frac{\cos(x)}{\sin(x)}\right)$
 $y' = (\sin(x))^{x} \left(\ln(\sin(x)) + x \frac{\cos(x)}{\sin(x)}\right)$

(g) y', where
$$x^2 + 3xy + y^2 = 1$$

Differentiating: $2x + 3y + 3xy' + 2yy' = 0$
Solving for y': $y'(3x + 2y) = -(2x + 3y)$

$$y' = \frac{-(2x+3y)}{3x+2y}$$

(h) The equation of the tangent line to $y = x^4 + 3x$ at the point (1,4)

 $y' = 4x^3 + 3$ Slope = y'(1) = 4 + 3 = 7Equation: y - 4 = 7(x - 1)

(i) The equation of the tangent line at (1,0) to the curve:

$$\sin(y^2 + x\sin(y)) = x^2 + 1$$

Differentiating:

$$\cos(y^2 + x\sin(y))(2yy' + \sin(y) + x\cos(y)y') = 2x$$

If
$$x = 1$$
 and $y = 0$, we get: $\cos(0)(0 + 0 + y') = 2$, so $y' = 2$
Equation: $y - 0 = 2(x - 1)$, so $y = 2x - 2$

(j)
$$f''(x)$$
, where $f(x) = \tan^{-1}(x)$
 $f'(x) = \frac{1}{1+x^2}$
 $f''(x) = -\frac{1}{(1+x^2)^2}(2x) = -\frac{2x}{(1+x^2)^2}$

4. (20 points) Show that the sum of the x- and y- intercepts of any tangent line to the curve $\sqrt{x} + \sqrt{y} = \sqrt{c}$ is c.

Slope:

$$\frac{1}{2\sqrt{x}} + y'\left(\frac{1}{2\sqrt{y}}\right) = 0$$
$$y'\left(\frac{1}{2\sqrt{y}}\right) = -\frac{1}{2\sqrt{x}}$$
$$y' = -\frac{\frac{1}{2\sqrt{x}}}{\frac{1}{2\sqrt{y}}}$$
$$y' = -\frac{2\sqrt{y}}{2\sqrt{x}}$$
$$y' = -\frac{\sqrt{y}}{\sqrt{x}}$$

Equation: At (x_0, y_0) , the slope is $-\frac{\sqrt{y_0}}{\sqrt{x_0}}$, and so the equation of the tangent line at (x_0, y_0) is:

$$y - y_0 = -\frac{\sqrt{y_0}}{\sqrt{x_0}}(x - x_0)$$

<u>y-intercept</u>: To find the <u>y</u>-intercept, set x = 0 and solve for <u>y</u>:

$$y - y_0 = -\frac{\sqrt{y_0}}{\sqrt{x_0}}(0 - x_0)$$
$$y - y_0 = -\frac{\sqrt{y_0}}{\sqrt{x_0}}(-x_0)$$
$$y - y_0 = \sqrt{y_0}\sqrt{x_0}$$
$$y = y_0 + \sqrt{y_0}\sqrt{x_0}$$

x-intercept:

To find the x-intercept, set y = 0 and solve for x:

$$0 - y_0 = -\frac{\sqrt{y_0}}{\sqrt{x_0}}(x - x_0)$$
$$-y_0 = -\frac{\sqrt{y_0}}{\sqrt{x_0}}(x - x_0)$$
$$x - x_0 = -\frac{\sqrt{x_0}}{\sqrt{y_0}}(-y_0)$$
$$x = x_0 + \sqrt{x_0}\sqrt{y_0}$$

Sum:

The sum of the y- and x- intercepts is:

$$(y_0 + \sqrt{y_0}\sqrt{x_0}) + (x_0 + \sqrt{x_0}\sqrt{y_0}) = x_0 + 2\sqrt{x_0}\sqrt{y_0} + y_0$$

Using the hint:

 $x_0 + 2\sqrt{x_0}\sqrt{y_0} + y_0 = (\sqrt{x_0})^2 + 2\sqrt{x_0}\sqrt{y_0} + (\sqrt{y_0})^2 = (\sqrt{x_0} + \sqrt{y_0})^2$

But since (x_0, y_0) is on the curve $\sqrt{x} + \sqrt{y} = \sqrt{c}$, we get $\sqrt{x_0} + \sqrt{y_0} = \sqrt{c}$.

And so, finally we get that the sum of the x- and y- intercepts is:

$$x_0 + 2\sqrt{x_0}\sqrt{y_0} + y_0 = (\sqrt{x_0} + \sqrt{y_0})^2 = (\sqrt{c})^2 = c$$

Bonus 1 (5 points) Assume f is a **nonzero** function which satisfies:

$$\begin{cases} f'(x) = f(x) \\ f(0) = 1 \end{cases}$$

For this problem, the following property might be useful:

Property: If g'(x) = 0 for all x, then g(x) = C, where C is a constant.

(a) Show that f(x+a) = f(x)f(a).

Hint: Define $g(x) = \frac{f(x+a)}{f(x)}$

$$g'(x) = \frac{f'(x+a)f(x) - f(x+a)f'(x)}{(f(x))^2} = \frac{f(x+a)f(x) - f(x+a)f(x)}{(f(x))^2} = 0$$

(We used the fact that f'(x+a) = f(x+a) and f'(x) = f(x))

So
$$g'(x) = 0$$
, so $g(x) = C$.

To find out what C is, notice that:

$$C = g(0) = \frac{f(a)}{f(0)} = f(a)$$

Hence C = f(a), and we get that g(x) = f(a), so

$$\frac{f(x+a)}{f(x)} = f(a)$$

And multiplying by f(x), we get:

$$f(x+a) = f(x)f(a)$$

(b) Show that $f(-x) = \frac{1}{f(x)}$ Hint: Define g(x) = f(-x)f(x).

$$g'(x) = -f'(-x)f(x) + f(-x)f'(x) = -f(-x)f(x) + f(-x)f(x) = 0$$

Hence g(x) = C.

But:

$$C = g(0) = f(0)f(0) = 1 \times 1 = 1$$

So $g(x) = 1$, and $f(-x)f(x) = 1$, and:
 $f(-x) = \frac{1}{f(x)}$

(c) Show that
$$f(ax) = f(x)^a$$

Hint: Define $g(x) = \frac{f(ax)}{f(x)^a}$

$$g'(x) = \frac{f'(ax)a(f(x))^a - f(ax)af(x)^{a-1}f'(x)}{f(x)^{2a}}$$
$$= \frac{af(ax)f(x)^a - af(ax)f(x)^{a-1}f(x)}{f(x)^{2a}}$$
$$= \frac{af(ax)f(x)^a - af(ax)f(x)^a}{f(x)^{2a}}$$
$$= 0$$

So g(x) = C, but:

$$C = g(0) = \frac{f(0)}{f(0)^a} = \frac{1}{1} = 1$$

So $g(x) = 1$, so $\frac{f(ax)}{f(x)^a} = 1$, so:
 $f(ax) = f(x)^a$

(d) (2 extra points) In fact, the converse statement is true too! Namely, if f is a function with:

$$\begin{cases} f(a+b) = f(a)f(b) \\ f(0) = 1 \\ f'(0) = 1 \end{cases}$$

Show that $f(x) = e^x$.

Notice that we're not making any assumptions about f being smooth, only that it is differentiable at 0!

Hint: All you need to show is that f'(x) = f(x) for all x.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{h}$$
$$= \lim_{h \to 0} f(x)\frac{f(h) - 1}{h}$$
$$= f(x)\lim_{h \to 0} \frac{f(h) - 1}{h}$$
$$= f(x)f'(0)$$
$$= f(x)$$

- **Bonus 2** (5 points) The following bonus problem is meant to show you that derivatives can behave in very strange ways!
 - (a) Find an example of a function f with $\lim_{x\to\infty} f(x) = 0$ but $\lim_{x\to\infty} f'(x) \neq 0$ (in fact, the limit does not exist)

Let $f(x) = \frac{\sin(x^2)}{x}$.

Then $\lim_{x\to\infty}f(x)=0$ by the Squeeze Theorem.

But:

$$f'(x) = \frac{\cos(x^2)(2x)x - \sin(x^2)}{x^2} = 2\cos(x^2) - \frac{\sin(x^2)}{x^2}$$

Now $\lim_{x\to\infty} \frac{\sin(x^2)}{x^2} = 0$ by the squeeze theorem, but $\lim_{x\to\infty} \cos(x^2)$ does not exist, from which it follows that: $\lim_{x\to\infty} f'(x)$ does not exist! (so in fact it is $\neq 0$)

(b) Find an example of a function f that is differentiable at 0, but whose derivative is not continuous at 0.

Let
$$f(x) = x^2 \sin(\frac{1}{x})$$

Then:

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin(\frac{1}{x}) - 0}{x} = \lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0$$
(by the squeeze theorem)

So f is differentiable at 0 with f'(0) = 0.

However:

$$f'(x) = 2x\sin\left(\frac{1}{x}\right) + x^2\left(-\frac{1}{x^2}\right)\cos\left(\frac{1}{x}\right) = 2x\sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right)$$

Now $\lim_{x\to 0} 2x \sin(\frac{1}{x}) = 0$ (by Squeeze Thm), but $\lim_{x\to 0} -\cos(\frac{1}{x})$ does not exist, so $\lim_{x\to 0} f'(x)$ does not exist, and in fact does not equal to f'(0) = 0.

So $\lim_{x\to 0} f'(x) \neq f'(0)$, hence f' is not continuous at 0.