MATH 1A - MIDTERM 2 - SOLUTIONS

PEYAM RYAN TABRIZIAN

1. (15 points) Using the definition of the derivative, calculate $f^{\prime}(4)$, where:

$$
\begin{aligned}
& f(x)=\sqrt{x} \\
f^{\prime}(4)= & \lim _{x \rightarrow 4} \frac{f(x)-f(4)}{x-4} \\
= & \lim _{x \rightarrow 4} \frac{\sqrt{x}-2}{x-4} \\
= & \lim _{x \rightarrow 4} \frac{(\sqrt{x}-2)(\sqrt{x}+2)}{(x-4)(\sqrt{x}+2)} \\
= & \lim _{x \rightarrow 4} \frac{x-4}{(x-4)(\sqrt{x}+2)} \\
= & \lim _{x \rightarrow 4} \frac{1}{\sqrt{x}+2} \\
= & \frac{1}{2+2} \\
= & \frac{1}{4}
\end{aligned}
$$

Hence, $f^{\prime}(4)=\frac{1}{4}$
2. (15 points) Using the definition of the derivative, calculate $f^{\prime}(x)$, where:

$$
f(x)=x^{2}+x
$$

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{x^{2}+x-\left(a^{2}+a\right)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{x^{2}+x-a^{2}-a}{x-a} \\
& =\lim _{x \rightarrow a} \frac{x^{2}-a^{2}+(x-a)}{x-a} \\
& =\lim _{x \rightarrow a} \frac{x^{2}-a^{2}}{x-a}+\frac{x-a}{x-a} \\
& =\lim _{x \rightarrow a} \frac{(x-a)(x+a)}{x-a}+\lim _{x \rightarrow a} \frac{x-a}{x-a} \\
& =\lim _{x \rightarrow a} x+a+\lim _{x \rightarrow a} 1 \\
& =2 a+1
\end{aligned}
$$

Hence, $f^{\prime}(x)=2 x+1$

Other solution:

$$
\begin{aligned}
f^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& =\lim _{h \rightarrow 0} \frac{(a+h)^{2}+(a+h)-\left(a^{2}+a\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{2}+2 a h+h^{2}+a+h-a^{2}-a}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 a h+h^{2}+h}{h} \\
& =\lim _{h \rightarrow 0} \frac{h(2 a+h+1)}{h} \\
& =\lim _{h \rightarrow 0} 2 a+h+1 \\
& =2 a+1
\end{aligned}
$$

Hence, $f^{\prime}(x)=2 x+1$
3. (50 points, 5 points each) Find the derivatives of the following functions:
(a) $f(x)=e^{x}+\cos (x)+1$

$$
f^{\prime}(x)=e^{x}-\sin (x)
$$

(b) $f(x)=x \ln (x)-x$

$$
f^{\prime}(x)=\ln (x)+x\left(\frac{1}{x}\right)-1=\ln (x)+1-1=\ln (x)
$$

(c) $f(x)=\frac{e^{x}}{(\sin (x))^{2}}$
$f^{\prime}(x)=\frac{e^{x}(\sin (x))^{2}-e^{x} 2 \sin (x) \cos (x)}{(\sin (x))^{4}}=\frac{e^{x}(\sin (x)-2 \cos (x))}{(\sin (x))^{3}}$
(d) $f(x)=\sqrt{\ln \left(x^{2}+1\right)}$

$$
f^{\prime}(x)=\left(\frac{1}{2 \sqrt{\ln \left(x^{2}+1\right)}}\right)\left(\frac{1}{x^{2}+1}\right)(2 x)
$$

Note: Woe to you if you tried to simplify!

$$
\ln \left(x^{2}+1\right) \neq \ln \left(x^{2}\right)+\ln (1)
$$

(e) $f(x)=\tan (\tan (\tan (x)))$

$$
f^{\prime}(x)=\sec ^{2}(\tan (\tan (x))) \times \sec ^{2}(\tan (x)) \times \sec ^{2}(x)
$$

(f) $f(x)=(\sin (x))^{x}$

Let $y=(\sin (x))^{x}$

1) $\ln (y)=x \ln (\sin (x))$
2) $\frac{y^{\prime}}{y}=\ln (\sin (x))+x \frac{\cos (x)}{\sin (x)}$
3) $y^{\prime}=y\left(\ln (\sin (x))+x \frac{\cos (x)}{\sin (x)}\right)$
$y^{\prime}=(\sin (x))^{x}\left(\ln (\sin (x))+x \frac{\cos (x)}{\sin (x)}\right)$
(g) y^{\prime}, where $x^{2}+3 x y+y^{2}=1$

Differentiating: $2 x+3 y+3 x y^{\prime}+2 y y^{\prime}=0$
Solving for $y^{\prime}: y^{\prime}(3 x+2 y)=-(2 x+3 y)$

$$
y^{\prime}=\frac{-(2 x+3 y)}{3 x+2 y}
$$

(h) The equation of the tangent line to $y=x^{4}+3 x$ at the point $(1,4)$
$y^{\prime}=4 x^{3}+3$
Slope $=y^{\prime}(1)=4+3=7$
Equation: $y-4=7(x-1)$
(i) The equation of the tangent line at $(1,0)$ to the curve:

$$
\sin \left(y^{2}+x \sin (y)\right)=x^{2}+1
$$

Differentiating:

$\cos \left(y^{2}+x \sin (y)\right)\left(2 y y^{\prime}+\sin (y)+x \cos (y) y^{\prime}\right)=2 x$

If $x=1$ and $y=0$, we get: $\cos (0)\left(0+0+y^{\prime}\right)=2$, so $y^{\prime}=2$
Equation: $y-0=2(x-1)$, so $y=2 x-2$
(j) $f^{\prime \prime}(x)$, where $f(x)=\tan ^{-1}(x)$

$$
f^{\prime}(x)=\frac{1}{1+x^{2}}
$$

$$
f^{\prime \prime}(x)=-\frac{1}{\left(1+x^{2}\right)^{2}}(2 x)=-\frac{2 x}{\left(1+x^{2}\right)^{2}}
$$

4. (20 points) Show that the sum of the $x-$ and $y-$ intercepts of any tangent line to the curve $\sqrt{x}+\sqrt{y}=\sqrt{c}$ is c .
$\underline{\text { Slope: }}$

$$
\begin{aligned}
\frac{1}{2 \sqrt{x}}+y^{\prime}\left(\frac{1}{2 \sqrt{y}}\right) & =0 \\
y^{\prime}\left(\frac{1}{2 \sqrt{y}}\right) & =-\frac{1}{2 \sqrt{x}} \\
y^{\prime} & =-\frac{\frac{1}{2 \sqrt{x}}}{\frac{1}{2 \sqrt{y}}} \\
y^{\prime} & =-\frac{2 \sqrt{y}}{2 \sqrt{x}} \\
y^{\prime} & =-\frac{\sqrt{y}}{\sqrt{x}}
\end{aligned}
$$

Equation: At $\left(x_{0}, y_{0}\right)$, the slope is $-\frac{\sqrt{y_{0}}}{\sqrt{x_{0}}}$, and so the equation of the tangent line at $\left(x_{0}, y_{0}\right)$ is:

$$
y-y_{0}=-\frac{\sqrt{y_{0}}}{\sqrt{x_{0}}}\left(x-x_{0}\right)
$$

$\frac{y \text {-intercept: }}{\text { To find the } y}$

$$
\begin{aligned}
y-y_{0} & =-\frac{\sqrt{y_{0}}}{\sqrt{x_{0}}}\left(0-x_{0}\right) \\
y-y_{0} & =-\frac{\sqrt{y_{0}}}{\sqrt{x_{0}}}\left(-x_{0}\right) \\
y-y_{0} & =\sqrt{y_{0}} \sqrt{x_{0}} \\
y & =y_{0}+\sqrt{y_{0}} \sqrt{x_{0}}
\end{aligned}
$$

x-intercept:
To find the x-intercept, set $y=0$ and solve for x :

$$
\begin{aligned}
0-y_{0} & =-\frac{\sqrt{y_{0}}}{\sqrt{x_{0}}}\left(x-x_{0}\right) \\
-y_{0} & =-\frac{\sqrt{y_{0}}}{\sqrt{x_{0}}}\left(x-x_{0}\right) \\
x-x_{0} & =-\frac{\sqrt{x_{0}}}{\sqrt{y_{0}}}\left(-y_{0}\right) \\
x & =x_{0}+\sqrt{x_{0}} \sqrt{y_{0}}
\end{aligned}
$$

Sum:
The sum of the y - and x - intercepts is:

$$
\left(y_{0}+\sqrt{y_{0}} \sqrt{x_{0}}\right)+\left(x_{0}+\sqrt{x_{0}} \sqrt{y_{0}}\right)=x_{0}+2 \sqrt{x_{0}} \sqrt{y_{0}}+y_{0}
$$

Using the hint:

$$
x_{0}+2 \sqrt{x_{0}} \sqrt{y_{0}}+y_{0}=\left(\sqrt{x_{0}}\right)^{2}+2 \sqrt{x_{0}} \sqrt{y_{0}}+\left(\sqrt{y_{0}}\right)^{2}=\left(\sqrt{x_{0}}+\sqrt{y_{0}}\right)^{2}
$$

But since $\left(x_{0}, y_{0}\right)$ is on the curve $\sqrt{x}+\sqrt{y}=\sqrt{c}$, we get $\sqrt{x_{0}}+$ $\sqrt{y_{0}}=\sqrt{c}$.

And so, finally we get that the sum of the $x-$ and y-intercepts is:

$$
x_{0}+2 \sqrt{x_{0}} \sqrt{y_{0}}+y_{0}=\left(\sqrt{x_{0}}+\sqrt{y_{0}}\right)^{2}=(\sqrt{c})^{2}=c
$$

Bonus 1 (5 points) Assume f is a nonzero function which satisfies:

$$
\left\{\begin{array}{l}
f^{\prime}(x)=f(x) \\
f(0)=1
\end{array}\right.
$$

For this problem, the following property might be useful:
Property: If $g^{\prime}(x)=0$ for all x, then $g(x)=C$, where C is a constant.
(a) Show that $f(x+a)=f(x) f(a)$.

Hint: Define $g(x)=\frac{f(x+a)}{f(x)}$
$g^{\prime}(x)=\frac{f^{\prime}(x+a) f(x)-f(x+a) f^{\prime}(x)}{(f(x))^{2}}=\frac{f(x+a) f(x)-f(x+a) f(x)}{(f(x))^{2}}=0$
(We used the fact that $f^{\prime}(x+a)=f(x+a)$ and $f^{\prime}(x)=f(x)$)
So $g^{\prime}(x)=0$, so $g(x)=C$.
To find out what C is, notice that:

$$
C=g(0)=\frac{f(a)}{f(0)}=f(a)
$$

Hence $C=f(a)$, and we get that $g(x)=f(a)$, so

$$
\frac{f(x+a)}{f(x)}=f(a)
$$

And multiplying by $f(x)$, we get:

$$
f(x+a)=f(x) f(a)
$$

(b) Show that $f(-x)=\frac{1}{f(x)}$

Hint: Define $g(x)=f(-x) f(x)$.

$$
g^{\prime}(x)=-f^{\prime}(-x) f(x)+f(-x) f^{\prime}(x)=-f(-x) f(x)+f(-x) f(x)=0
$$

Hence $g(x)=C$.
But:

$$
C=g(0)=f(0) f(0)=1 \times 1=1
$$

So $g(x)=1$, and $f(-x) f(x)=1$, and:

$$
f(-x)=\frac{1}{f(x)}
$$

(c) Show that $f(a x)=f(x)^{a}$

Hint: Define $g(x)=\frac{f(a x)}{f(x)^{a}}$

$$
\begin{aligned}
g^{\prime}(x) & =\frac{f^{\prime}(a x) a(f(x))^{a}-f(a x) a f(x)^{a-1} f^{\prime}(x)}{f(x)^{2 a}} \\
& =\frac{a f(a x) f(x)^{a}-a f(a x) f(x)^{a-1} f(x)}{f(x)^{2 a}} \\
& =\frac{a f(a x) f(x)^{a}-a f(a x) f(x)^{a}}{f(x)^{2 a}} \\
& =0
\end{aligned}
$$

So $g(x)=C$, but:

$$
C=g(0)=\frac{f(0)}{f(0)^{a}}=\frac{1}{1}=1
$$

So $g(x)=1$, so $\frac{f(a x)}{f(x)^{a}}=1$, so:

$$
f(a x)=f(x)^{a}
$$

(d) (2 extra points) In fact, the converse statement is true too! Namely, if f is a function with:

$$
\begin{cases}f(a+b)= & f(a) f(b) \\ f(0)= & 1 \\ f^{\prime}(0)=1\end{cases}
$$

Show that $f(x)=e^{x}$.
Notice that we're not making any assumptions about f being smooth, only that it is differentiable at 0 !

Hint: All you need to show is that $f^{\prime}(x)=f(x)$ for all x.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x) f(h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} f(x) \frac{f(h)-1}{h} \\
& =f(x) \lim _{h \rightarrow 0} \frac{f(h)-1}{h} \\
& =f(x) f^{\prime}(0) \\
& =f(x)
\end{aligned}
$$

Bonus 2 (5 points) The following bonus problem is meant to show you that derivatives can behave in very strange ways!
(a) Find an example of a function f with $\lim _{x \rightarrow \infty} f(x)=0$ but $\lim _{x \rightarrow \infty} f^{\prime}(x) \neq 0$ (in fact, the limit does not exist)

Let $f(x)=\frac{\sin \left(x^{2}\right)}{x}$.
Then $\lim _{x \rightarrow \infty} f(x)=0$ by the Squeeze Theorem.
But:

$$
f^{\prime}(x)=\frac{\cos \left(x^{2}\right)(2 x) x-\sin \left(x^{2}\right)}{x^{2}}=2 \cos \left(x^{2}\right)-\frac{\sin \left(x^{2}\right)}{x^{2}}
$$

Now $\lim _{x \rightarrow \infty} \frac{\sin \left(x^{2}\right)}{x^{2}}=0$ by the squeeze theorem, but $\lim _{x \rightarrow \infty} \cos \left(x^{2}\right)$ does not exist, from which it follows that:
$\lim _{x \rightarrow \infty} f^{\prime}(x)$ does not exist! (so in fact it is $\neq 0$)
(b) Find an example of a function f that is differentiable at 0 , but whose derivative is not continuous at 0 .

Let $f(x)=x^{2} \sin \left(\frac{1}{x}\right)$.
Then:

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{2} \sin \left(\frac{1}{x}\right)-0}{x}=\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0
$$

(by the squeeze theorem)
So f is differentiable at 0 with $f^{\prime}(0)=0$.
However:

$$
f^{\prime}(x)=2 x \sin \left(\frac{1}{x}\right)+x^{2}\left(-\frac{1}{x^{2}}\right) \cos \left(\frac{1}{x}\right)=2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right)
$$

Now $\lim _{x \rightarrow 0} 2 x \sin \left(\frac{1}{x}\right)=0$ (by Squeeze Thm), but $\lim _{x \rightarrow 0}-\cos \left(\frac{1}{x}\right)$ does not exist, so $\lim _{x \rightarrow 0} f^{\prime}(x)$ does not exist, and in fact does not equal to $f^{\prime}(0)=0$.

So $\lim _{x \rightarrow 0} f^{\prime}(x) \neq f^{\prime}(0)$, hence f^{\prime} is not continuous at 0 .

